Sabtu, 25 Juni 2011

quantitative manajemen

LINEAR PROGRAM

Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan keuntungan dan meminimumkan biaya.
Karakteristik Pemrograman Linier
Sifat linearitas, Sifat proporsional, sifat additivitas, Sifat divisibilitas, Sifat kepastian,
Formulasi Permasalahan
Urutan pertama dalam penyelesaian adalah mempelajari sistem relevan dan mengembangkan pernyataan permasalahan yang dipertimbangakan dengan jelas. Penetapan tepat merupakan aspek yang sangat penting dalam formulasi masalah.
Pembentukan model matematik
Tahap berikutnya yang harus dilakukan setelah memahami permasalahan optimasi adalah membuat model yang sesuai untuk analisis. Bagian kedua merupakan model matematik yang merepresentasikan sumber daya yang membatasi. Fungsi pembatas bisa berbentuk persamaan (=) atau pertidaksamaan (≤ atau ≥).
Di sisi lain, model matematik mempunyai kelemahan. Tidak semua karakteristik sistem dapat dengan mudah dimodelkan menggunakan fungsi matematik.
Bentuk umum pemrograman linier adalah sebagai berikut :
Fungsi tujuan :
Maksimumkan atau minimumkan z = c1x1 + c2x2 + ... + cnxn
Sumber daya yang membatasi :
a11x1 + a12x2 + ... + a1nxn = /≤ / ≥ b1
a21x1 + a22x2 + … + a2nxn = /≤ / ≥ b2

am1x1 + am2x2 + … + amnxn = /≤ / ≥ bm
x1, x2, …, xn ≥ 0
Simbol x1, x2, ..., xn (xi) menunjukkan variabel keputusan. Jumlah variabel keputusan (xi) oleh karenanya tergantung dari jumlah kegiatan atau aktivitas yang dilakukan untuk mencapai tujuan. Simbol c1,c2,...,cn merupakan kontribusi masing-masing variabel keputusan terhadap tujuan, disebut juga koefisien fungsi tujuan pada model matematiknya.Simbol a11, ...,a1n,...,amn merupakan penggunaan per unit variabel keputusan akan sumber daya yang membatasi, atau disebut juga sebagai koefisien fungsi kendala pada model matematiknya. Simbol b1,b2,...,bm menunjukkan jumlah masing-masing sumber daya yang ada. Jumlah fungsi kendala akan tergantung dari banyaknya sumber daya yang terbatas.
Pertidaksamaan terakhir (x1, x2, …, xn ≥ 0) menunjukkan batasan non negatif. Membuat model matematik dari suatu permasalahan bukan hanya menuntut kemampuan matematik tapi juga menuntut seni permodelan. Menggunakan seni akan membuat permodelan lebih mudah dan menarik.

1.Seorang peternak memiliki 200 kambing yang mengkonsumsi 90 kg pakan khusus setiap harinya tersebut disiapkan menggunakan campuran jagung dan bungkil kedelai dengan komposisi sebagai berikut :
Bahan
Kg per kg bahan

Kalsium
Protein
Serat
Biaya (Rp/kg)
Jagung
0.001
0.09
0.02
2000
Bungkil kedelai
0.002
0.60
0.06
5500
Kebutuhan pakan kambing setiap harinya adalah paling banyak 1% kalsium, paling sedikit 30% protein dan paling banyak 5% serat.
Formulasikan permasalahan di atas kedalam model matematiknya !
x1 = jumlah jagung yang akan digunakan
x2 = jumlah bungkil kedelai yang akan digunakan
Model umum Pemrograman linier kasus di atas oleh karenanya adalah :
Fungsi tujuan : minimumkan z = 2000 x1 + 5500 x2
Kendala :
x1 + x2 = 90
0.001 x1 + 0.002 x2 ≤ 0.9
0.09 x1 + 0.6 x2 ≥ 27
0.02 x1 + 0.06 x2 ≤ 4.5
x1, x2 ≥ 0

Tidak ada komentar:

Posting Komentar